INCHEM Tokyo 2017

Current Status and Implementation Approach for Industrial Zones Wastewater Management In Yangon Region

Than Than Thwe Director, Ministry of Construction Joint Secretary-1, Thilawa SEZ Management Committee

Contents

Introduction

- Location of Industrial Zones in Yangon Region
- Wastewater Pollution Control Activities by MONREC-ECD, YCDC, MOI
- Myanmar Industrial Wastewater Guidelines

Current Systems

- Mingaladon Industrial Park Wastewater Treatment Plant
- Thilawa SEZ Wastewater Treatment Plant

Implementation Approach

Analysis and Implementation Approach for Industrial Zones
 Wastewater Treatment Plant in Yangon Region

Location of Industrial Zones in Myanmar

Location of Industrial Zones in Yangon City

Why we need Industrial Wastewater Treatment Plant?

- Industrial wastewater usually includes hazardous substances or high concentration organic matters which directly discharge to public water bodies without treatment may cause damage to human health or pollution as surrounding environmental deterioration.
- Institutions -
- (1) Environmental Conservation Department(Ministry of Natural Resources and Environmental Conservation-MONREC)
- (2) Yangon City Development Committee-YCDC
- (3) Department of Industrial Supervision and Inspection (Ministry of Industry)
- Regulations for Water Pollution Control and Enforcement
- National Environmental Quality (Emission) Guidelines (2015)

Regulations related Water Environmental Management

- ♦ National Environmental Policy (1994)
- ♦ Water Management and Myanmar Agenda 21, 1997
- \diamond 2008 Constitutions and Environmental Conservation
- \diamond Water Management and National Sustainable Development Strategy 2009
- Environmental Conservation Law (2012)
- Environmental Conservation Rules (2014)
- Environmental Impact Assessment Procedure (2015)
- National Environmental Quality (Emission) Guidelines (2015)

Wastewater Parameters and Guideline Values of National Environmental Quality

Parameter	Unit	Guideline Value	Parameter	Unit	Guideline Value
5 Days BOD	mg/l	50	Mercury	mg/l	0.01
Ammonias	mg/l	10	Nickel	mg/l	0.5
Arsenic	mg/l	0.1	Oil and grease	mg/l	10
Cadmium	mg/l	0.1	рН	SU	6-9
COD	mg/l	250	Phenols	mg/l	0.5
Chlorine (Total Residual)	mg/l	0.2	Selenium	mg/l	0.1
Chromium (hexavalent)	mg/l	0.1	Silver	mg/l	0.5
Chromium (total)	mg/l	0.5	Sulphide	mg/l	1
Copper	mg/l	0.5	Temperature	° C	<3°C
Cyanide (free)	mg/l	0.1	Total Coliform	100m	400
Cyanide (Total)	mg/l	1.0	bacteria	1	
Fluoride	mg/l	20	Total Phosphorus	mg/l	2.0
Heavy Metals (Total)	mg/l	10	TSS	mg/l	50
Iron	mg/l	3.5	Zinc	mg/l	2.0
Lead	mg/l	0.1			

Current Systems

Mingaladon Industrial Park.

Mingaladon Industrial Park Wastewater Treatment

PROCESS AND MASS FLOW DIAGRAM FOR EXTENDED AERATION

ACTIVATED SLUDGE PROCESS

WASTE WATER TREATMENT PLANT

Wastewater Quality Criteria to WWTP (Mingaladon Industrial Park)

Parameter	Unit	Guideline Value	Parameter	Unit	Guideline Value
5 Days BOD	mg/l	240	рН	SU	6-9
COD	mg/l	500	Temperature	° C	35°C
Free Ammonia	mg/l	0.5	Mercury	mg/l	0.005
Arsenic	mg/l	0.05	Nickel	mg/l	0.1
Cadmium	mg/l	0.01	Oil and grease	mg/l	30
Chloride	mg/l	600	Phenols	mg/l	0.002
Chromium (hexavalent)	mg/l	0.1	Selenium	mg/l	0.01
Chlorine	mg/l	1.0	Sulphur	mg/l	0.01
Copper	mg/l	0.5	Sulphate	mg/l	400
Cyanide (free)	mg/l	0.02	Detergent	mg/l	0.5
Phosphate	mg/l	1.0	Mineral Oil (H/C)	mg/l	10.0
Fluorine	mg/l	1.5	TDS	mg/l	1000
Nitrate	mg/l	10	TSS	mg/l	200
Nitrite	mg/l	1.0	Zinc	mg/l	5.0
Iron	mg/l	5.0	Lead	mg/l	0.1

Source: Mingaladon Industrial Park

Thilawa Special Economic Zone Jointly Developed by Myanmar and Japan

Developer: Myanmar Japan Thilawa Development Ltd., (MJTD)

Thilawa SEZ Wastewater Treatment Plant (4800 m³/day)

Wastewater Treatment in Thilawa SEZ

Thilawa SEZ Wastewater Treatment Plant Layout Plan

Applied Wastewater Standard in Thilawa SEZ

Based on standard by Ministry of Industry 1995

- Adding to some parameters (T-N, Color, etc)
- Many Stakeholders were involved

Based on NEQG (adding to T-P, heavy metals etc.,)

Combined with MOI and NEQG
 (apply stricter value, some parameters BOD, COD, oil & grease will be relived but compliance with NEQG

Thilawa SEZ Internal Rules and Regulations:

(Standard of Wastewater Quality after Pre-wastewater treatment by the Locator)

No	Parameter	Wastewater Standard	Unit
1	BOD (5 days at 20°C)	max 200	ppm
2	Suspended Solids (SS)	max 200	ppm
3	Total Dissolved Solids	max 2000	ppm
4	pH Value	6.5-8.5	
5	COD min Permanganate value (Under Review)	max 150	ppm
6	COD cr Dicromate Value	max 300	ppm
7	Sulphide (as HS)	max 1	ppm
8	Cyanide (as HCN)	max 0.2	ppm
9	Oil and grease	max 5	ppm
10	Total coliform bacteria	max 400	MPN/100ml
11	Tar	None	-
12	Formaldehyde	max 1	ppm
13	Phenols and cresols	max 1	ppm
14	Free Chlorine	max 1	ppm

No	Parameter	Wastewater Standard	Unit
15	Zinc	max 5	ppm
16	Chromium	max 0.5	ppm
17	Arsenic	max 0.25	ppm
18	Copper	max 1.0	ppm
19	Mercury	max 0.005	ppm
20	Cadmium	max 0.03	ppm
21	Barium	max 1.0	ppm
22	Selenium	max 0.02	ppm
23	Lead	max 0.2	ppm
24	Nickel	max 0.2	ppm
25	Insecticides	None	-
26	Radioactive Materials	None	-
27	Temperature	max 35	° C
28	Color and Odor QCVN40: 2011/BTNMT QCVN13: 2008/BTNMT	150	(Co-Pt)
29	T-N	40	ppm

Key Points of Water Pollution Control

Hazardous & Chemical Substances Management (High Risk Management)

- Checking Production Process
- Submission of raw material list with MSDS (Material Safety Data Sheet)
- Submission of plan for amount of chemical consumption and its monitoring
- Bi-annually self inspection and reporting results of inspection

• Guidance to install Proper Wastewater Treatment System

Checking proper wastewater treatment system by referring to international standard
 Issuing notification of target parameters to be monitored to investors

Water Quality Monitoring

- Treated wastewater by investor (every month) (to measure 7 Basic Parameters such as pH, BOD, COD, SS, Total-N, Total Coliform, Oil and Grease)
- Treated wastewater by MJTD wastewater treatment plant (daily, weekly, monthly, biannually)
- Surface water quality monitoring by MJTD (bi-annually)

Main Responsibilities of Environmental Section (OSSC)

Before Construction

- Reviewing and Approval of Environmental Conservation and Prevention Plan (ECPP)
- Screening of necessary Environmental Impact Assessment (EIA) and Initial Environmental Examination (IEE)
- Reviewing and Appraisal of EIA and IEE

During Construction

- Inspection to Construction site
- Checking Environmental Monitoring Reports
- Reviewing and Appraisal of EIA and IEE

During Operation

- Inspection to investors
- Checking Environmental Monitoring Reports

Analysis and Implementation Approach

Studied by: JICA, Kobelco Eco Solutions Co., Ltd., Supreme Water Doctor Co., Ltd.

Planning of Industrial Wastewater Treatment Plant

 Factory water balance, wastewater quality survey, required discharge standard

- Confirmation of wastewater treatment volume, discharge, volume without treatment, treatment parameters
- Studies of wastewater volume at sources, concentration reduction, or reuse of wastewater in next process without treatment
- Determination of w/w volume, water quality (inlet/out let), treatment process, layout plan
- Government Owned
 Build Own Operate
- Build Own Transfer

Study Area: Hlaing Thar Yar

Number of Factories and Occupied Area (Hlaing Tharyar Industrial Zones)

	Planning compartments	Occupied compartments	Occupancy rate	Occupied area (Acre)
Zone 1	190	157	83%	280
Zone 2	250	202	81%	376
Zone 3	110	82	75%	277
Zone 4	180	161	89%	243
Total	730	602	82%	1,176

Source: data from YCDC

Wastewater is discharged to Pan Hlaing river through Open Trench, Open Creek

Source: Kobelco Eco Solutions Co., Ltd. Supreme Water Doctor Co., Ltd.

Options of Case Study

<u>Case 1:</u> Zone (1)

- Option 1: Without rain water
- Option 2: With rain water
- **<u>Case 2:</u>** Zone (1,2,3 and 4)
 - Option 1: Without rain water
 - Option 2: With rain water

Note: Study for installation of pre-wastewater treatment is not included. Because most of the factories may not be necessary to install pre-wastewater treatment by themselves except for factories discharging hazardous and chemical substance and concentration of BOD & COD levels from the factories can be treated by the central WWTP.

Setting target wastewater to be treated

Wastewater characteristic

Mainly have 7 kinds of wastewater line in this area with difference characteristic

- Type 1: Domestic wastewater
- Type 2: Garment Industrial wastewater
- Type 3: Dyeing industrial wastewater
- ✤ Type 4: Ice industrial wastewater
- ✤ Type 5: Chemical industrial wastewater
- Type 6: Paper factory industrial wastewater (with and without paper mill)
- Type 7: Food industrial wastewater

Zone 1 Wastewater Estimated Flow Rate

No	Kind of industrv	Design flowrate	Calculated flowrate	COD	s-COD	BOD	SS	TN	TP
	· · · · · · · · · · · · · · · · · · ·	m3/d	m3/d	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Zone 1	8,300	6,581	1,899	1,031	836	881	65.6	7.1
1	Domestic		1083	405	182	225	667	64.1	12.0
2	Garment		1616	1,300	1,040	260	61	150	5.0
3	Dyeing			2,500	2,000	1,000	200	130	10.0
4	Ice storage		145	2,000	900	1,500	500	100	31.0
5	Chemical <i>Painting</i> <i>Fertilizer</i>		871	3,000 355	540 160	600 178	2,000 463	50 200	2.0 2.0
6	Paper								
	Paper mill		697	5,500	3,614	3,000	3,000	9.0	2.0
	Without paper mill		621	500	300	300	450	1.0	0.1
7	Food		1548	1,880	1,034	1,176	510	35.6	11.8

Zone 1+2+3+ 4 Wastewater Estimated Flow Rate

No	kind of industry	Design flowrate	Calculated flowrate	COD	s-COD	BOD	SS	TN	TP
		m3/d	m3/d	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Zone 1 +2+3+4	43,300	34,614	1,973	1,209	931	719	83.1	9.6
1	Domestic		5,468	405	182	225	667	64.1	12.0
2	Garment		8,062	1,300	1,040	260	61	150	5.0
3	Dyeing		4,325	2,500	2,000	1,000	200	130	10.0
4	Ice storage		2,670	2,000	900	1,500	500	100	31.0
5	Chemical <i>Painting</i>		2,038	3,000	540	600	2,000	50	2.0
	Fertilizer		415	355	160	178	463	200	2.0
6	Paper								
	Paper mill		3,362	5,500	3,614	3,000	3,000	9.0	2.0
	Without paper mill		621	500	300	300	450	1.0	0.1
7	Food		7,650	1,880	1,034	1,176	510	35.6	11.8
	Decign Flow Data - Calculated Flow Data (0.9 (0.9 accurancy rate)								

Design Flow Rate = Calculated Flow Rate/0.8 (0.8 occupancy rate)

Setting wastewater treatment process

Flow sheet – without rain water case study M M Μ Μ Discharge Clarifier 2 Clarifier 1 **Coagulation Flocculation** Disinfection Aeration Pump pit Sludge storage Sludge storage tank tank tank 2 3 PRIMARY TREATMENT TO **REMOVE BACTERIAL** COD, BOD, NH3, TP, **REMOVE SS, COD, BOD TN REMOVAL** Inlet Outlet Parameter Unit 4 COD 1780 - 1800 < 250 mg/l BOD 700 - 800 < 50 mg/l SS mg/l 600 - 720 < 50 NH3-N mg/l 80 - 95 < 10 TP mg/l 6.5 - 9 < 2 Coliform MPN/100 ml < 400

Outlet Conform to Effluent levels for Wastewater Treatment Facilities in National Environmental Quality (emission) guidelines 22 Apr. 2015

Layout Plan for Zone 1 Wastewater Treatment Pant

Layout Plan for Zone 1+2+3+4 Wastewater Treatment Pant

Capacity: 43,300 m3/d

<u>Area 250 x 200 = 50,000 m2</u>

Project Implementation Options

Project Scheme : Government Owned

Project Implementation Options

Project Scheme : Build – Operate – Transfer

Project Implementation Options

Project Scheme : Build – Own- Operate

Conclusion

- Issues due to the limited facilities and budget, lack of technologies, increasing population and industries
- International Best Practice and experiences to formulate the regulations for wastewater management
- Preventive Measures is needed for health and environmental deterioration
- Control Measures Monitoring /Coordination/ Regulations and Environmental Quality Standard/ Capacity Building / Persuasion/ Incentives (reward behavior that reduce pollution
- Implementation Options ???
- Development of Eco Industrial Zones
- Thilawa SEZ will meet Sustainable Development Goals (SDGs)

Thank You!

Than Than Thwe tt.than@gmail.com

Comparison

	Covernment Oursed	Private Company Owned			
	Government Owned	BOO (Build-Own-Operate)	BOT (Build-Operate-Transfer)		
Arrangement of Funds - CAPEX - OPEX	Government (Yangon Region Government)	spc			
Payment by Government	 For Construction of Plant to EPC Contractor (Payment at the time of constrction) For Operation and Maintenance (O&M) to Cotractor if it is outsourced. 	- For Waste Water Treatment Service to S (Payment over the period of Waste Water Treatme			
Source of Fund for Payment by Government	Own fund for construction of Plant (= Tax revenue or Loan) * Fund for construction of Plant and O&M will be collected from factories in the industrial zone (Tenants) over the period of plant operation.	Fee collected from factories in the industrial zone (Tenant be * It is recommended to set the Government's fee charged Tenants higher than the fee paid to SPC in order to cover expenses of Government.			
Ownership of Waste Water Treatment Plant	wnership of 'aste Water Treatment Yangon Region Government ant		- Originally, SPC owns plant. - After reasonable return of investment has been obtained by Investors, ownership is transferred to Yangon Region Government.		
Summary of role of Government	- Arrangement of fund - Operation and Maintenance of Plant - Colletion of fees from Tenants - Arrangement of land - Arrangement of resettlement (if required)		 Payment of waste water treatment service fee Guarantee of waste water volume and quality Collection of fee from Tenants Arrangement of land Arrangement of resettlement (if required) 		